import tensorflow as tf import numpy as np from numpy.random import RandomState
with tf.name_scope('input'): x = tf.placeholder(tf.float32,name = 'xinput') y = tf.placeholder(tf.float32,name = 'yinput') tf.summary.scalar('x',x) tf.summary.scalar('y',y)
with tf.name_scope('parameter'): a = tf.Variable(0.0,name='a') b = tf.Variable(0.0,name='b') tf.summary.scalar('a',a) tf.summary.scalar('b',b)
with tf.name_scope('predict'): y_=a*x+b;
with tf.name_scope('loss'): loss = tf.square((y_-y),name='loss') tf.summary.scalar('loss',loss)
with tf.name_scope('train_step'): train_step = tf.train.GradientDescentOptimizer(0.01).minimize(loss) #tf.summary.scalar('train_step',train_step)
with tf.Session() as sess: writer = tf.summary.FileWriter('tensorflow-start_Log', sess.graph) sess.run(tf.global_variables_initializer()) for i in range(2000): idx = rdm.randint(0,3000) summary,_=sess.run([merged,train_step],feed_dict={x:xdata[idx],y:ydata[idx]}) writer.add_summary(summary, i) a_value,b_value = sess.run([a,b]) print(a_value) print(b_value)