1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
| from __future__ import print_function
import tensorflow as tf import cv2 import sys sys.path.append("game/") import wrapped_flappy_bird as game import random import numpy as np from collections import deque
GAME = 'bird' ACTIONS = 2 GAMMA = 0.99 OBSERVE = 100000. EXPLORE = 2000000. FINAL_EPSILON = 0.0001 INITIAL_EPSILON = 0.0001 REPLAY_MEMORY = 50000 BATCH = 32 FRAME_PER_ACTION = 1
def weight_variable(shape): initial = tf.truncated_normal(shape, stddev = 0.01) return tf.Variable(initial)
def bias_variable(shape): initial = tf.constant(0.01, shape = shape) return tf.Variable(initial)
def conv2d(x, W, stride): return tf.nn.conv2d(x, W, strides = [1, stride, stride, 1], padding = "SAME")
def max_pool_2x2(x): return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = "SAME")
def createNetwork(): W_conv1 = weight_variable([8, 8, 4, 32]) b_conv1 = bias_variable([32])
W_conv2 = weight_variable([4, 4, 32, 64]) b_conv2 = bias_variable([64])
W_conv3 = weight_variable([3, 3, 64, 64]) b_conv3 = bias_variable([64])
W_fc1 = weight_variable([1600, 512]) b_fc1 = bias_variable([512])
W_fc2 = weight_variable([512, ACTIONS]) b_fc2 = bias_variable([ACTIONS])
s = tf.placeholder("float", [None, 80, 80, 4])
h_conv1 = tf.nn.relu(conv2d(s, W_conv1, 4) + b_conv1) h_pool1 = max_pool_2x2(h_conv1)
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2, 2) + b_conv2)
h_conv3 = tf.nn.relu(conv2d(h_conv2, W_conv3, 1) + b_conv3)
h_conv3_flat = tf.reshape(h_conv3, [-1, 1600])
h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat, W_fc1) + b_fc1)
readout = tf.matmul(h_fc1, W_fc2) + b_fc2
return s, readout, h_fc1
def trainNetwork(s, readout, h_fc1, sess): a = tf.placeholder("float", [None, ACTIONS]) y = tf.placeholder("float", [None]) readout_action = tf.reduce_sum(tf.multiply(readout, a), reduction_indices=1) cost = tf.reduce_mean(tf.square(y - readout_action)) train_step = tf.train.AdamOptimizer(1e-6).minimize(cost)
game_state = game.GameState()
D = deque()
a_file = open("logs_" + GAME + "/readout.txt", 'w') h_file = open("logs_" + GAME + "/hidden.txt", 'w')
do_nothing = np.zeros(ACTIONS) do_nothing[0] = 1 x_t, r_0, terminal = game_state.frame_step(do_nothing) x_t = cv2.cvtColor(cv2.resize(x_t, (80, 80)), cv2.COLOR_BGR2GRAY) ret, x_t = cv2.threshold(x_t,1,255,cv2.THRESH_BINARY) s_t = np.stack((x_t, x_t, x_t, x_t), axis=2)
saver = tf.train.Saver() sess.run(tf.initialize_all_variables()) checkpoint = tf.train.get_checkpoint_state("saved_networks") if checkpoint and checkpoint.model_checkpoint_path: saver.restore(sess, checkpoint.model_checkpoint_path) print("Successfully loaded:", checkpoint.model_checkpoint_path) else: print("Could not find old network weights")
epsilon = INITIAL_EPSILON t = 0 while "flappy bird" != "angry bird": readout_t = readout.eval(feed_dict={s : [s_t]})[0] a_t = np.zeros([ACTIONS]) action_index = 0 if t % FRAME_PER_ACTION == 0: if random.random() <= epsilon: print("----------Random Action----------") action_index = random.randrange(ACTIONS) a_t[random.randrange(ACTIONS)] = 1 else: action_index = np.argmax(readout_t) a_t[action_index] = 1 else: a_t[0] = 1
if epsilon > FINAL_EPSILON and t > OBSERVE: epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / EXPLORE
x_t1_colored, r_t, terminal = game_state.frame_step(a_t) x_t1 = cv2.cvtColor(cv2.resize(x_t1_colored, (80, 80)), cv2.COLOR_BGR2GRAY) ret, x_t1 = cv2.threshold(x_t1, 1, 255, cv2.THRESH_BINARY) x_t1 = np.reshape(x_t1, (80, 80, 1)) s_t1 = np.append(x_t1, s_t[:, :, :3], axis=2)
D.append((s_t, a_t, r_t, s_t1, terminal)) if len(D) > REPLAY_MEMORY: D.popleft()
if t > OBSERVE: minibatch = random.sample(D, BATCH)
s_j_batch = [d[0] for d in minibatch] a_batch = [d[1] for d in minibatch] r_batch = [d[2] for d in minibatch] s_j1_batch = [d[3] for d in minibatch]
y_batch = [] readout_j1_batch = readout.eval(feed_dict = {s : s_j1_batch}) for i in range(0, len(minibatch)): terminal = minibatch[i][4] if terminal: y_batch.append(r_batch[i]) else: y_batch.append(r_batch[i] + GAMMA * np.max(readout_j1_batch[i]))
train_step.run(feed_dict = { y : y_batch, a : a_batch, s : s_j_batch} )
s_t = s_t1 t += 1
if t % 10000 == 0: saver.save(sess, 'saved_networks/' + GAME + '-dqn', global_step = t)
state = "" if t <= OBSERVE: state = "observe" elif t > OBSERVE and t <= OBSERVE + EXPLORE: state = "explore" else: state = "train"
print("TIMESTEP", t, "/ STATE", state, \ "/ EPSILON", epsilon, "/ ACTION", action_index, "/ REWARD", r_t, \ "/ Q_MAX %e" % np.max(readout_t)) ''' if t % 10000 <= 100: a_file.write(",".join([str(x) for x in readout_t]) + '\n') h_file.write(",".join([str(x) for x in h_fc1.eval(feed_dict={s:[s_t]})[0]]) + '\n') cv2.imwrite("logs_tetris/frame" + str(t) + ".png", x_t1) '''
def playGame(): sess = tf.InteractiveSession() s, readout, h_fc1 = createNetwork() trainNetwork(s, readout, h_fc1, sess)
def main(): playGame()
if __name__ == "__main__": main()
|