openCV机器学习
条评论上周看代码的时候发现自己把机器学习的代码写了个开头,然后就烂尾了,想着既然开了个头,干脆就花一些时间写下去得了,反正是使用OpenCV去做一个封装,想必也没有多难,所以就开始写了。其实关于模式识别和机器学习的东西很早就开始做了,但是总是觉得做的并不太好,所以感觉有点遗憾,也没有能够留下一点什么东西。
总的来说以前主要做的东西是关于MNIST手写数字识别库的一些东西,手写数字识别库是一个用于机器学习的开源库,在机器学习中这个库使用得很广泛,其中包含了60000个训练样本和1000预测样本,这个库的格式很简单,首先是4字节的int型变量,表示样本的个数,然后是两个四字节的变量表示每个手写数字的大小,实际上训练样本是60000个,每个样本影像的大小为28*28,在读取数据头的时候注意,需要字节取反,所以整个读取存在一个字节取反的问题,字节取反的代码如下:1
2
3
4
5
6
7
8
9
10
11void mnistFile::swapBuffer(char* buf)
{
char temp;
temp = *(buf);
*buf = *(buf+3);
*(buf+3) = temp;
temp = *(buf+1);
*(buf+1) = *(buf+2);
*(buf+2) = temp;
}
由于是通过OpenCV进行机器学习,所以我们最后数据都要转换为OpenCV的Mat格式,实际上在数据构造的时候可以直接讲数据转换为Mat就好了
1 | void CVMachineLearningTrain::CV_GetMnistTrainData(const char* pathMnist, const char* pathLabel, Mat &trianMat, Mat &labelMat) |
获取数据之后保存在Mat之中,从以上代码我们可以看到,实际上我们获取了28*28的数据,一共60000个,组成了一个60000x784的矩阵,而训练结果我们使用一个60000x10的矩阵表示,0-9数字,为哪个数字则一个10维的向量对应的一项为1其他项都为0,对于不同的训练数据类型应该采取不同的转换样式,如果为BP神经网络训练,则Label可以为10维的向量;若训练方式为SVM则结果为1维int类型的结果向量。
则使用OpenCV进行分类的代码为:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89void CVMachineLearningTrain::CV_ANN_BP_Train(const char* pathDataset, const char* pathLabelSet, const char* pathNet, DatasetTypes datasetType)
{
Ptr<ANN_MLP> ann = ANN_MLP::create();
int layers[3] = { 28 * 28,15,10 };
Mat_<int> layerSize(1, 3);
memcpy(layerSize.data, layers, sizeof(int) * 3);
ann->setLayerSizes(layerSize);
ann->setActivationFunction(ANN_MLP::SIGMOID_SYM, 1, 1);
ann->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 300, FLT_EPSILON));
ann->setTrainMethod(ANN_MLP::BACKPROP, 0.001);
Mat trainMat, labelMat;
if (datasetType == DATASET_MNIST)
CV_GetMnistTrainData(pathDataset, pathLabelSet, trainMat, labelMat);
Ptr<TrainData> tData = TrainData::create(trainMat, ROW_SAMPLE, labelMat);
printf("BP Netural Network train~ing...\n");
ann->train(tData);
printf("-done\n");
ann->save(pathNet);
}
void CVMachineLearningTrain::CV_SVM_Train(const char* pathDataset,double C ,const char* pathLabelSet, const char* pathSVM, DatasetTypes datasetType)
{
Mat trainData;
Mat labelsMat;
if(datasetType== DATASET_MNIST)
CV_GetMnistTrainData(pathDataset, pathLabelSet, trainData, labelsMat);
float* labelf =(float*)labelsMat.data;
Mat labelsMatAdapter=Mat::zeros(labelsMat.rows, 1, CV_32SC1);
for (int i = 0; i < labelsMat.rows; ++i)
{
int j = 0;
for (j = 0; j < labelsMat.cols; ++j)
{
if (abs(labelf[i*labelsMat.cols +j] - 1) < 0.0001)
break;
}
labelsMatAdapter.at<int>(i, 0) = j;
}
Ptr<TrainData> tData = TrainData::create(trainData, ml::ROW_SAMPLE, labelsMatAdapter);
Ptr<SVM> svm = SVM::create();
svm->setType(SVM::C_SVC);
svm->setKernel(SVM::POLY); //SVM::LINEAR;
svm->setDegree(1);
svm->setGamma(0.3);
svm->setCoef0(1.0);
svm->setNu(1);
svm->setP(0.5);
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 10000, 0.01));
svm->setC(C);
printf("SVM train~ing...\n");
svm->train(tData);
printf("-done\n");
svm->save(pathSVM);
///////////////////////////////////////////////////////////
}
void CVMachineLearningTrain::CV_LogisticRegression_Train(const char* pathDataset, const char* pathLabelSet, const char* pathLogisticRegression, DatasetTypes datasetType)
{
Mat trainData;
Mat labelsMat;
if (datasetType == DATASET_MNIST)
CV_GetMnistTrainData(pathDataset, pathLabelSet, trainData, labelsMat);
float* labelf = (float*)labelsMat.data;
Mat labelsMatAdapter = Mat::zeros(labelsMat.rows, 1, CV_32FC1);
for (int i = 0; i < labelsMat.rows; ++i)
{
int j = 0;
for (j = 0; j < labelsMat.cols; ++j)
{
if (abs(labelf[i*labelsMat.cols + j] - 1) < 0.0001)
break;
}
labelsMatAdapter.at<float>(i, 0) = j;
}
float* data = (float*)labelsMatAdapter.data;
Ptr<LogisticRegression> lr1 = LogisticRegression::create();
lr1->setLearningRate(0.001);
lr1->setIterations(10);
lr1->setRegularization(LogisticRegression::REG_L2);
lr1->setTrainMethod(LogisticRegression::BATCH);
lr1->setMiniBatchSize(1);
printf("logistic regression train~ing...\n");
lr1->train(trainData, ROW_SAMPLE, labelsMatAdapter);
printf("-done\n");
lr1->save(pathLogisticRegression);
}
训练得到训练好了的分类库输出到文件中,在进行判别的时候直接从文件中读取训练结果进行判别。
则进行判别的代码比较简单,在这里不进行详细描述,详细代码在Git上可以获取:https://github.com/wuweiFrank/rsProcess/tree/master/rsProcess/machineLearning 关于相关算法的具体描述,以后有时间会陆续进行记录和描述。